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Abstract

This paper presents an analytical investigation into the effect of a grazing mean flow upon the acoustic impedance of a

rectangular aperture in a plate of finite thickness. Previous similar analytical works each made some simplifying

approximation about the variation of the acoustic potential throughout the thickness of the aperture, such that they were

valid only in either the thin or thick plate limits. In addition to providing a theoretical framework to correctly allow for a

plate of any thickness, the results given here indicate the range of validity of the previous approximate theories.

Two different forms of matching conditions across the shear layer have been proposed in previous works. Equations and

boundary element method (BEM) solutions for both variants are given here. Results from both forms are compared

against some existing measured results. As the approximations regarding aperture thickness have now been removed, it is

possible to be definitive as to which form of matching conditions gives the most accurate results for a given application.

The analysis is shown to predict the reactance of the aperture very well, although the results for resistance show greater

discrepancy against experimental values.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

It is common practice to use perforations in the walls of flow ducts as a sound-attenuating mechanism.
Typical applications are in vehicle silencer systems, HVAC ducts and the nacelles of jet engines. The mean
flow may be forced through the perforations, or be tangential to the plane of the perforations, or be a
combination of both. It is well known that the mean flow has a marked effect upon the acoustic impedance of
the orifices in the perforate, although the detailed mechanism and nature of that influence is still largely
unknown. Attention is focused here on grazing flow past a rectangular aperture where the flow is turbulent,
fully developed, and of low Mach number. Such conditions are typically found in exhaust silencers of internal
combustion engines, although the perforations for this application are generally circular orifices or punched
rectangular louvres.

The grazing flow effect on aperture impedance is generally accounted for by some empirical equation
derived from one or more of the many experimental investigations [1–14] into the effect. There is much
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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variation between experimental results, although general trends are observed through them all, such as an
increase of orifice resistance and a decrease of orifice reactance with increasing mean flow. The variation can in
part be explained by differences in the form of the mean flow, and in particular the boundary layer
development, between the different sets of results. Theoretical models [5,15–19] of various complexity for the
grazing flow effect on orifice impedance have at best predicted the general trends, but detailed validation
against relevant experimental results has been poor. Furthermore, they have generally employed some form of
empirical parameter.

Howe et al. [20] presented a purely theoretical analysis of the influence of grazing flow upon the impedance
of a circular orifice when the flow is of low Mach number but high Reynolds number, such that viscous effects
are unimportant except in the generation of vorticity. The orifice can then be assumed to be spanned by a
vortex sheet of zero thickness. The analysis matches the flow fields above and below the plane of the orifice
through continuity of pressure and displacement across the vortex sheet. The solution gives the distribution of
the vertical component of the particle displacement across the aperture, which can then be integrated to yield
the conductivity or impedance of the aperture. Howe, also gives a general method by which this form of an
analysis can be extended to an aperture of finite thickness, both for rectangular [21] and circular [22] apertures.
However, this method is approximate in so much as it is assumed that the vertical displacement does not vary
throughout the thickness of the aperture. It is surmised [21,22] that this extension is therefore only valid for an
orifice of small thickness to radius ratio, and also when the wavelength of disturbances on the vortex sheet is
much greater than the orifice thickness.

In a further paper, Howe [23] has given an approximate method by which the same general form of analysis
can be adapted for rectangular apertures of large thickness to width ratio. In this case, the fluid inside the
cylindrical region of the aperture is assumed to be in uniform motion and is matched to the average pressure
and displacement of the flow field above the shear layer, assuming the aperture to be of infinite thickness.
Similar matching conditions are imposed in the lower plane of the aperture, although there is no shear layer to
be considered here. To the author’s knowledge, results from this thick aperture version of Howe’s theory have
never been compared to results either from experiments or the earlier theory for thinner apertures.
Throughout this paper, results from the two forms of approximation for apertures of finite thickness are
referred to as thin and thick aperture results, respectively.

In the application areas mentioned above and in the experimental measurements used for validation of
the models in this paper [14,24], the flow tangential to the aperture will be highly turbulent such that the
shear layer will be thick relative to the aperture size. Detailed theoretical and experimental studies [25–27]
give evidence that across such a thick shear layer it is appropriate to apply continuity of normal particle
velocity, rather than the condition of continuity of normal displacement which is correct across a vortex
sheet of zero thickness. These observations prompted Jing et al. [28] to adapt the theory of Howe et al.
[20,21] to impose continuity of pressure and normal velocity across the shear layer rather than continuity
of pressure and displacement. This may be interpreted as an imprecise attempt to adapt the theory based
on a vortex sheet to account for the fact that in reality the shear layer will have finite thickness. They
assumed that the normal velocity was constant through the thickness of the aperture and hence one
would expect their results to be valid only for apertures of small thickness to radius ratio, or for thin apertures.
Jing et al. [28] introduced the shorthand particle displacement match (PDM) and particle velocity
match (PVM) to distinguish the two cases, and the same terminology will be used here. They compared
thin aperture analytical results for aperture impedance as a function of Mach number from both the PDM
and PVM with measured values and concluded that the PVM values were more accurate for both resistance
and reactance. Their experimental tests were conducted predominantly on apertures of large thickness to
radius ratio.

Peat et al. [24] conducted a more exacting test by comparing results for orifice impedance as a function of
Strouhal number from both the PDM and PVM with various sets of measured values. In respect of reactance,
the conclusions of Jing et al. [28] were confirmed, since the PVM correctly predicted the trend if not the precise
values of reactance as a function of Strouhal number. The results for resistance were rather more ambiguous,
however. The orifices used in the experiments had dimensions typical of those found in vehicle silencer systems
and had less thickness than those tested by Jing et al. [28], yet still they violated the thin wall approximation of
the theory. Thus, concern remained that the differences between the theoretical and experimental results might
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be attributable more to the thin aperture approximations than the matching conditions applied on the
shear layer.

This paper extends the theory of Howe to consider the effects of aperture thickness precisely. The flow field
within the thickness of the aperture is allowed to vary and it is matched to the external fields at both the top
and bottom boundaries of the aperture. At the shear layer boundary, the PDM and PVM conditions are
applied alternatively. Both sets of results are compared against results from the corresponding thin aperture
theories, and the former results are also compared against results from the thick aperture theory. For
simplicity, only rectangular apertures are considered such that the flow field within the thickness of the
aperture can be considered as two-dimensional. This flow field is evaluated numerically by a boundary element
method (BEM). The range of validity of the thin and thick aperture approximations then becomes clear.
Finally, the BEM results are compared against some existing experimental results [24] for the impedance of
circular orifices.

2. Governing equations

The early part of the analysis follows that of Howe et al. [20]. Consider an infinite rigid plate of thickness H

in which there is a rectangular aperture of length 2s in the X-direction and width B in the Y-direction, as
shown in Fig. 1. A uniform flow of velocity U in the X-direction is assumed to be present above the top surface
of the plate, in Z40. It is assumed that the fluid is incompressible and that the Reynolds number is large
enough for viscosity to be neglected, except for its role in generating vorticity as the flow separates at the
leading edge of the aperture. The aperture is spanned by a vortex sheet. It is assumed that the motion of this
vortex sheet is two-dimensional and that there is no variation in the Y-direction across the width of the
aperture. Within the thickness of the aperture, the flow field is then two-dimensional and is shown in cross-
section in Fig. 2. The entire flow field is regarded as three distinct regions, coupled by flow boundaries GU and
GL at the top and bottom surface of the aperture, respectively.

A uniform time-harmonic acoustic pressure fluctuation of frequency o is applied across the aperture, with
pressure magnitudes p011 and p031in the far-field of regions 1 and 3 respectively. Thus the velocity q1 in Region
1, Z40, can be written as

q1 ¼ U iþ q01e
�jot, (1)

where i is a unit vector in the X-direction and q01e
�jot is the particle velocity fluctuation. For fluctuations of

small magnitude, the momentum equation can be linearized to give

r0ð�joþUq=qX Þq01 ¼ �rp01, (2)

where p0re
�jot is the pressure fluctuation in region r. From the curl of Eq. (2) it is clear that a velocity potential

exists such that

q01 ¼ rðF
þ þ F01Þ ¼ rF

0
1, (3)
U
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B

H
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Z

Fig. 1. One-sided flow past a rectangular aperture in an infinite plate.
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Fig. 2. Cross-section of the aperture of thickness h.
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where F+ is the constant far-field potential. Hence, from the incompressible continuity equation it follows
that the velocity potential F01 is subject to Laplace’s equation. Substitution from Eq. (3) into Eq. (2) followed
by integration gives

r0ð�joþUq=qX ÞF01 ¼ �p01 þ p011, (4)

where the constant of integration is the far-field applied pressure in Region 1. Now in Region 3, Zo�H,
exactly the same relations apply with U ¼ 0, thus

�jor0F
0
3 ¼ �p03 þ p031. (5)

Likewise in Region 2,

�jor0F
0
2 ¼ �p02 þ c (6)

for a general constant of integration c. Now there is no shear layer across the lower surface of the aperture,
thus

F02 ¼ F03 and p02 ¼ p02 on GL, (7)

hence c ¼ p031.

2.1. Continuity of particle displacement across the vortex sheet

Howe et al. assumed that the pressure and particle displacement are continuous across the vortex sheet over
the top surface of the aperture. From continuity of the pressure, it follows from Eqs. (4) and (6) that

r0½ð�joþUq=qX ÞF01 þ joF02� ¼ p011 � p031 on GU . (8)

Now the total derivative of acoustic displacement is the acoustic velocity, thus the Z-component alone gives

�joþU
q
qX

� �
qF02
qZ
¼ �jo

qF01
qZ

on GU (9)

for continuity of particle displacement across the shear layer. Non-dimensional variables are introduced where

F01 ¼
jp
r0o
ðp011 � p031Þf1; B ¼ sb; H ¼ sh; X ¼ sx, (10)

etc. such that Eqs. (8) and (9) can be re-written as

1þ
j

S

q
qx

� �
f1 � f2 ¼

1

p
on GU (11)

and

1þ
j

S

q
qx

� �
qf2

qz
¼

qf1

qz
on GU , (12)

respectively, where S ¼ os/U is the Strouhal number.



ARTICLE IN PRESS
K.S. Peat et al. / Journal of Sound and Vibration 292 (2006) 610–625614
Since the plate is assumed to be rigid, the velocity component normal to the plate is zero on z ¼ 0 and
z ¼ �h except in the region of the aperture. Thus, from application of Green’s Theorem in Regions 1 and 3,

f1i ¼ �
1

2p

ZZ
GU

ðqf1=qzÞ

r
dxdZ and f3i ¼

1

2p

ZZ
GL

ðqf3=qzÞ

r
dxdZ (13a,b)

on GU and GL, respectively, where r ¼ jrðx; ZÞ � riðx; yÞj and point i lies on GU or GL, respectively. Integration
with respect to Z and y leads to spanwise-averaged equations of the form [22]

f1ðxÞ ¼
�1

2p

Z þ1
�1

qf1ðxÞ
qz

Rðx; xÞdx and f3ðxÞ ¼
1

2p

Z þ1
�1

qf3ðxÞ
qz

Rðx; xÞdx, (14a,b)

where

Rðx; xÞ ¼
1

b

Z Z þb=2

�b=2

dZ dy

r
¼ �2flnjx� xj þ Lðx; xÞg (15)

and

Lðx; xÞ ¼ �ln bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
þ ðx� xÞ2

q� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1=bÞ2ðx� xÞ2

q
� ð1=bÞjx� xj. (16)

Given the conditions on the lower boundary, Eq. (7), it follows from Eq. (14b) that

f2ðxÞ ¼
1

2p

Z þ1
�1

qf2ðxÞ
qz

Rðx; xÞdx on GL. (17)

Substitution from Eq. (14a) into Eq. (11), followed by use of Eq. (12), gives

1þ
j

S

q
qx

� �2
1

2

Z þ1
�1

qf2ðxÞ
qz

Rðx; xÞdx
� �

þ pf2ðxÞ ¼ �1 on GU . (18)

As a check on consistency, it may be noted that it is possible to recover earlier solutions from the
formulation above. Firstly, in the limit of a plate of infinitesimal thickness, GL ¼ GU and it follows from Eqs.
(17) and (18) that

1þ
j

S

q
qx

� �2

þ 1

( )
1

2

Z þ1
�1

qf2ðxÞ
qz

Rðx; xÞdx
� �

¼ �1 on GU , (19)

which is the solution of Howe et al. [20]. Secondly, for a thin wall h51 and provided the wavelength of the
disturbance on the vortex sheet is large compared to h, Howe assumed that the vertical displacement of fluid in
the aperture is independent of z, say qf2=qz ¼ f ðxÞ. It follows from integration with respect to z that

f2jGL
¼ f2jGU

� h
qf2

qz
. (20)

Thus from Eqs. (17), (18) and (20)

1þ
j

S

q
qx

� �2

þ 1

( )
1

2

Z þ1
�1

qf2ðxÞ
qz

Rðx; xÞdx
� �

þ h
qf2

qz
¼ �1 on GU (21)

and again the solution of Howe [22] is recovered.
Eq. (18) can be re-written as

1þ
j

S

q
qx

� �2 Z þ1
�1

1

2

qf2ðxÞ
qz

Rðx; xÞ þ pf2ðxÞGðx; xÞ
� �

dx
� �

¼ �1 on GU , (22)

where

Gðx; xÞ ¼ �S2ðx� xÞHðx� xÞejSðx�xÞ, (23)
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since the Green’s function Gðx; xÞ then satisfies

1þ
j

S

q
qx

� �2

Gðx; xÞ ¼ dðx� xÞ. (24)

Eq. (22) can now be integrated with respect to the second-order differential operator to giveZ þ1
�1

1

2

qf2ðxÞ
qz

Rðx; xÞ þ pf2ðxÞGðx; xÞ
� �

dxþ ðl1 þ l2xÞejSx ¼ �1 on GU (25)

for arbitrary coefficients l1 and l2.
In Region 2, the solution is completely two-dimensional and hence, for rigid side walls GS to the aperture,

Green’s Theorem gives

cif2i ¼
1

2p

Z
GU

f2

r

qr

qn
� lnðrÞ

qf2

qz

� �
dxþ

1

2p

Z
GL

f2

r

qr

qn
þ lnðrÞ

qf2

qz

� �
dxþ

1

2p

Z
GS

f2

r

qr

qn
dG, (26)

where now r ¼ jrðx; BÞ � riðx; zÞj, and n is the outward normal to the boundaries. The value of coefficient ci

depends upon the location of point i, but in this paper point i will always be taken on a smooth portion of
boundary at which ci ¼ 0.5. A solution is sought for Eq. (26) subject to conditions (17) and (25) on GL and GU,
respectively.

2.2. Continuity of normal particle velocity across the vortex sheet

Jing et al. [28] proposed the application of continuity of the normal particle velocity across the vortex sheet
rather than the continuity of the particle displacement. This is given by

qF02
qZ
¼

qF01
qZ

on GU (27)

or in terms of non-dimensional variables given by Eq. (10)

qf2

qz
¼

qf1

qz
on GU (28)

and results in Eq. (18) regarding the boundary condition on GU being replaced by

1þ
j

S

q
qx

� �
1

2

Z þ1
�1

qf2ðxÞ
qz

Rðx; xÞdx
� �

þ pf2ðxÞ ¼ �1 on GU . (29)

This can be re-written as

1þ
j

S

q
qx

� � Z þ1
�1

1

2

qf2ðxÞ
qz

Rðx; xÞ þ pf2ðxÞG
0ðx; xÞ

� �
dx

� �
¼ �1 on GU , (30)

where the Green’s function G0ðx; xÞ is given by

G0ðx; xÞ ¼ �jSðx� xÞHðx� xÞejSðx�xÞ, (31)

which satisfies

1þ
j

S

q
qx

� �
G0ðx; xÞ ¼ dðx� xÞ. (32)

Eq. (30) can now be integrated with respect to the first-order differential operator to giveZ þ1
�1

1

2

qf2ðxÞ
qz

Rðx; xÞ þ pf2ðxÞG
0ðx; xÞ

� �
dxþ lejSx ¼ �1 on GU (33)

for an arbitrary coefficient l.
A solution is sought for the integral equation (26) subject to conditions (17) and (33) on GL and GU,

respectively, when continuity of the normal velocity across the vortex sheet is applied.
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3. Solution of the governing equations

In order to solve the complete problem for an aperture of finite thickness, it is necessary to find the
boundary integral equation (26) concerning Region 2 subject to the boundary conditions on GL andGU. The
boundary condition on GL is given by Eq. (17), and the boundary condition on GU is given by Eq. (25) or (33)
according to continuity of the displacement or the normal velocity, respectively. A boundary element
procedure is used, whereby the entire boundary GL+GU+GS of the aperture is discretized into a finite number
of elements with associated nodes, at which the values of f2 and qf2=qn are to be determined. For simplicity,
the suffix 2 will be dropped from further equations since they all now refer to Region 2 only.

The boundary integral equation (26) can be written in matrix format as

A1 A2 A3

A4 A5 A6

A7 A8 A9

2
64

3
75

/GU

/GL

/GS

8><
>:

9>=
>; ¼

B1 B2

B3 B4

B5 B6

2
64

3
75 ðq/=qzÞGU

ðq/=qzÞGL

( )
, (34)

where the coefficients of sub-matrices A1�9 and B1�6 are all known. Similarly, Eqs. (17), (25) and (33) can now
be written as

f/GL
g ¼ ½C�fðq/=qzÞGL

g, (35)

½D�f/GU
g ¼ ½E�ðq/=qzÞG ~U

� f1g � l1fejSxg � l2fxejSxg (36)

and

½F �f/GU
g ¼ ½E�ðq/=qzÞG ~U

� f1g � lfejSxg, (37)

respectively, where again the coefficients of matrices [C] [D] [E] and [F] are known. To be precise,

ðAlÞij ¼

Z
ej

1

r

qr

qn
dG� dijp,

where l ¼ 1; 2; . . . ; 9 and dij is the Kronecker delta

ðBlÞij ¼ a
Z

ej

lnðrÞdG,

where l ¼ 1; 2; . . . ; 6 and, a ¼ 1 for l ¼ 1,3,5 and a ¼ �1 for l ¼ 2,4,6

Cij ¼
1

2p

Z
ej

Rðx; xÞdG; Dij ¼

Z
ej

pGðx; xÞdG,

Eij ¼ �
1

2

Z
ej

Rðx; xÞdG; F ij ¼

Z
ej

pG0ðx; xÞdG.

For the solution in the case where continuity of the displacement is applied, substitution from Eqs. (35) and
(36) into Eq. (34) gives

A1D
�1E � B1 A2C � B2 A3

A4D
�1E � B3 A5C � B4 A6

A7D
�1E � B5 A8C � B6 A9

2
64

3
75
ðq/=qzÞGU

ðq/=qzÞGL

/GS

8><
>:

9>=
>; ¼

A1D
�1

A4D
�1

A7D
�1

2
64

3
75ðf1g þ l1fejSxg þ l2fxejSxgÞ. (38)

On the other hand, for the solution in the case where continuity of the normal velocity is applied, substitution
from Eqs. (35) and (37) into Eq. (34) gives

A1F
�1E � B1 A2C � B2 A3

A4F
�1E � B3 A5C � B4 A6

A7F
�1E � B5 A8C � B6 A9

2
64

3
75
ðq/=qzÞGU

ðq/=qzÞGL

/GS

8><
>:

9>=
>; ¼

A1F
�1

A4F
�1

A7F
�1

2
64

3
75ðf1g þ lfejSxgÞ. (39)
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The Kutta condition implies that the vortex sheet leaves the surface of the plate tangentially and it is
implemented by requiring that the vertical component of velocity is zero on the first few upstream nodes of GU.
In the case where continuity of the particle displacement is applied, the first two upstream velocity values are
taken to be zero and Eq. (38) can be re-arranged to replace them in the vector of unknowns by the unknown
coefficients l1 and l2, with consequent changes to the first two columns of the matrix on the left-hand side.
Eq. (38) then becomes represents a square system of linear equations which can be solved and, in particular,
the normal velocity on the shear layer follows. In the case where the continuity of the normal velocity is
applied, only the first normal velocity is taken to be zero and Eq. (39) can be re-arranged to replace this value
in the vector of unknowns by the unknown coefficient l, with consequent changes to the first column of the
matrix on the left-hand side.

Once the solution of the normal velocity qf=qz on the boundary GU is obtained, the Rayleigh conductivity
and the acoustic impedance of the aperture can be calculated. Now the Rayleigh conductivity of an aperture is
given by

KR ¼ jr0oQ=ðp11 � p31Þ, (40)

where Q is the volume velocity through the aperture. Hence from Eq. (10)

KR

2Re

¼ G� jD ¼ �
p
2

ffiffiffiffiffiffi
pB

2s

r Z þ1
�1

qf
qz

����
GU

dx, (41)

where the mean effective radius of the aperture Re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2sB=p

p
. Alternatively, the specific acoustic impedance

of the aperture is given by

B ¼ y� jw ¼ ðp31 � p11Þ=r0c0u ¼ 2jSM

,
p
Z þ1
�1

q/
qz

����
GU

dx

 !
, (42)

where u is the average velocity through the aperture and M is the Mach number of the mean flow. It is seen
that the impedance is predicted to vary linearly with the Mach number, hence subsequent results are all given
for B=M or y=M ; w=M.

4. Results

Prior to investigation of the effects of thickness of an aperture, it is of interest to determine the effect of the
assumption that the motion of the vortex sheet is two-dimensional and the associated spanwise averaging of
the velocity potential. Fig. 3 gives a comparison of PDM results for aperture impedance obtained using this
assumption, together with results from a complete analysis where the potential and the displacement were
allowed to vary with y. The results are for a square aperture of zero thickness, i.e. with an aspect ratio
-2

-1

0

1

2

3

0 2 4
S

� 
/ M

χ

θ

1 3 5

Fig. 3. Effect of spanwise averaging for an aperture of zero thickness (PDM analysis). analytical averaging; _ _ _ _ numerical

averaging; - - - - - with spanwise variation.
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of b/2 ¼ 1. A mesh of 40 elements in the streamwise direction and 20 elements across a half-span was used for
both sets of analysis. Symmetry allows for meshing over only a half-span. The spanwise averaged results are
obtained both by analytical integration and by numerical integration using the same number of spanwise
strips as for the spanwise varying analysis. Fig. 3 shows that the effects of spanwise averaging are minimal
even for an aperture of such small aspect ratio. There is a small but just distinguishable difference between the
analytically and numerically integrated results, which indicates that in these results the mesh size has more
bearing upon the error than whether or not one averages out the spanwise variation. There is no obvious
reason why this conclusion should change for an aperture of non-zero thickness and the assumption is implicit
in all of the results that follow.

All subsequent results also pertain to a square aperture. The reason for this choice is that, in the application
area of vehicle exhaust systems at which this work is targeted, the perforations are generally circular orifices.
As a first approximation, a circular orifice is modeled as a square aperture of equivalent area, for simplicity.
Thus, the theoretical results are compared against experimental results for circular apertures. It may also be
noted that a square aperture represents an exacting test case of the two-dimensional theory, which one would
expect to model more accurately an aperture of high aspect ratio.

Results that demonstrate the effect of the thickness of the aperture upon its impedance are shown in
Figs. 4–9. The results from the complete analysis as detailed in this paper are compared with results that use
the various approximations, for both the PDM and PVM analysis. Analytical integration in the spanwise
direction was used in all cases. The number of elements for integration across the aperture in the streamwise
direction is kept the same for the thin, thick and BEM analyses. The number of elements required to ensure
adequate convergence was checked at both the low and high limits of Strouhal number. For the BEM analysis,
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the element size on GS has been kept as close as possible to that on GU and GL, subject to their being at least
five elements. As a further check, it was found that the results of Howe et al. [20] for an aperture of
infinitesimal thickness could be recovered from the BEM analysis for very small but non-zero h.

Figs. 4 and 5 show the aperture resistance and reactance for varying Strouhal number for plate thickness
h ¼ 0.1 and 2, respectively, using the PDM analysis. A comparison is given between the BEM results and
results using both the thin and thick plate approximations. For the reactance in particular, the BEM results
are seen to be close to the thin plate results in Fig. 4, where h ¼ 0.1, and to the thick plate results in Fig. 5,
where h ¼ 2, as one might expect. Figs. 6 and 7 show the aperture resistance and reactance for varying plate
thickness for a Strouhal number S ¼ 1 and 5,respectively, using the PDM analysis. Again, a comparison is
given between the BEM results and results using both the thin and thick plate approximations. It is seen from
the results for reactance that the thin plate approximation is only valid for very small h, although the limit rises
with Strouhal number up to about h ¼ 0.3 when S ¼ 5. The thick plate approximation appears valid for
h40.5 at S ¼ 1, rising to h40.75 at S ¼ 5. In contrast, both the thin and thick plate approximations give poor
values for the variation of resistance with plate thickness. Indeed the thick wall theory indicates that there is
no variation in resistance at all with plate thickness. It should, however, be noted that the magnitude of the
resistance is very small as compared to the reactance and thus absolute errors are far more noticeable in
resistance values.

Results of the aperture impedance as a function of plate thickness from the PVM method are shown in
Figs. 8 and 9 for Strouhal numbers of 1 and 5, respectively. At S ¼ 1 the thin plate approximation is seen to
give similar values to the BEM solution for all plate thicknesses, although the former results display an
instability which is not seen in the latter. In contrast at S ¼ 5 the thin plate approximation results for
resistance are subject to substantial error except at very small plate thickness, but the reactance values remain
accurate for all plate thicknesses. Again, absolute errors are far more noticeable in the resistance values, which
have much smaller magnitude than the reactance values.

If Eqs. (38) and (39) are used for calculation of the BEM results for the PDM and PVM analysis,
respectively, then an instability is noted in the vicinity of h ¼ 1.4 in all of the results shown in Figs. 6–9. This
instability can be removed by enforcement of the continuity equation for the overall problem. The final row in
the partitioned matrix systems of both Eqs. (38) and (39) was replaced by

1 �1 0
	 
 ðq/=qzÞGU

ðq/=qzÞGL

/GS

8><
>:

9>=
>; ¼ ½0�

to enforce Z
GU

ðqf=qzÞGU
dx ¼

Z
GL

ðqf=qzÞGL
dx.

Although this treatment was effective in removal of the instability, a larger number of boundary elements was
required along the shear layer as compared to the original formulation, before the results converged to a stable
solution.

Figs. 10–13 show the distribution of normal velocity across the full span of the aperture on both its upper
and lower surfaces, as given by the PVM method. Figs. 10–12 are for apertures of varying thickness, namely
h ¼ 0.2, 1 and 5, respectively, at a Strouhal number S ¼ 1. It is seen that for h ¼ 0.2 and 5, the distributions
over the top and bottom surfaces of the aperture at S ¼ 1 are nearly equal, as assumed by the thin wall theory,
whereas at the intermediate thickness h ¼ 1 the profiles are much more dissimilar. At higher Strouhal
numbers, the velocity distribution on both surfaces has a distinct waveform of quite different amplitudes on
the two surfaces, as seen in Fig. 13. This figure shows the relative distributions for S ¼ 5 and h ¼ 0.2, but the
differences between the velocity distributions on the top and bottom surfaces remain equally marked for all
apertures of greater thickness.

Finally, in Figs. 14–16, BEM results from both the PDM and PVM analyses are compared with
experimental measurements of aperture impedance as given by Peat et al. [24], for three different sizes of
aperture. The experiments were conducted on sections of perforated sheet containing an array of circular
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Fig. 10. Distribution of normal velocity over the upper and lower surfaces of an aperture of thickness h ¼ 0.2, S ¼ 1 (PVM analysis):
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Fig. 11. Distribution of normal velocity over the upper and lower surfaces of an aperture of thickness h ¼ 1, S ¼ 1 (PVM analysis):
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Fig. 12. Distribution of normal velocity over the upper and lower surfaces of an aperture of thickness h ¼ 5, S ¼ 1 (PVM analysis):

(a) real part; (b) imaginary part. —— upper surface; - - - - - lower surface.
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orifices. The Mach number of the mean flow was 0.085 in all of the tests. The results are presented in the form
of impedance per single orifice, taking into account the interference effect between orifices as given by
Rschevkin [29] for the zero mean flow case. Results for orifices of 4mm diameter and thicknesses of 2, 3 and
5mm are shown in Figs. 14–16, respectively. These values, particularly at the smallest thickness, are typical of
orifice sizes used in the perforates of exhaust systems. The BEM analysis presented here is for the impedance
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of rectangular apertures. The results shown for comparison with experimental results are for square apertures
of the same equivalent area as the circular orifices of the experiments, which results in values of h ¼ 1.13, 1.7
and 2.82 for Figs. 14–16, respectively.

The results for reactance in Figs. 14–16 indicate that the PVM results are to be preferred to the PDM
results. Indeed they model the experimental results to a very high degree of accuracy, especially in view of the
fact that experimental results for a circular orifice have been compared against theoretical results for an
equivalent square aperture. Unfortunately, the results for resistance are not as conclusive, although the PVM
results are definitely better than the PDM results, which was not obviously the case when using the thin
aperture approximations [24].
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It was noted in earlier work [24] which used the thin aperture approximation that the PDM results for
resistance gave a better fit to experimental data when the mean flow velocity in the theory was taken to be the
convection velocity of vorticity. This was a rational argument, since the only influence of mean flow in the
theory is upon creation of the shear layer. The effect would be that all of the theoretical results in Figs. 14–16
would be compressed into a Strouhal number range of 0 to 0.6, rather than 0 to 1.2 as shown. However, the
BEM results for reactance as given here, particularly for the PVM method, demonstrate very clearly that a
Strouhal number based upon the mean flow velocity is the correct choice in the theory. The resistance results
in Figs. 14–16 for both PDM and PVM would actually still benefit from the given redefinition of the
theoretical Strouhal number, at least as regards prediction of the Strouhal number at which the resistance
becomes negative. This is of particular interest because it marks the beginning of a Strouhal number in which
the orifice generates self-noise and flow-generated noise, particularly whistles, are a problematic feature of
perforates in exhaust systems. Thus the ability to predict the Strouhal number regime at which this problem
occurs would be extremely valuable. Although a redefinition of the Strouhal number is now ruled out, it may
be observed from Figs. 14 to 16 that the BEM results for resistance differ from the experimental results by
virtually a constant shift alone. Given this shift, both the magnitude of resistance and the Strouhal number
regime of negative resistance would be predicted accurately. Whether any rational explanation can be found to
apply such a shift to either the experimental or theoretical results is quite another matter. It must also be
remarked upon yet again that the magnitude of the resistance is very small such that any errors in the
experimentation or shortcomings of the theoretical approach have a large relative effect upon the resistance as
compared to the reactance.

The results given above have been computed for real frequencies o. Howe [23] derived an approximate
analytic continuation of the linear impedance function into the complex frequency plane to predict the
frequency of the lowest self-sustained oscillation of the shear layer, for which the response amplitude increases
exponentially with time. In practice, the amplitude will be limited by nonlinear mechanisms that are ignored
by linear perturbation theory, but the frequency predicted by the latter was similar to that observed
experimentally. It may be argued that at frequencies close to this tonal frequency, which essentially lies at the
minimum point of negative resistance, the impedance ratio given by linear theory could be incorrect since the
response amplitudes are limited by nonlinear mechanisms. The quality of the PVM results in Figs. 14–16
throughout the Strouhal number range would imply that this is not a problem and that the impedance ratio is
governed primarily by physical attributes of the aperture, in particular the thickness, rather than by the
mechanism which limits the response amplitudes.

5. Conclusions

An entirely analytical method, that fully accounts for thickness of the aperture, has been presented for the
evaluation of the effect of grazing flow upon the impedance of rectangular apertures. Results from this
analysis have been evaluated numerically by a BEM method and compared with results from earlier theories,
each of which involved some form of approximation pertaining to the aperture thickness. These comparisons
indicate the limits of accuracy and application of the various previous approximate theories.
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For very thin shear layers, such that the PDM conditions are appropriate, it is shown that the thin plate
approximation is only valid for infinitesimal aperture thickness, whereas the thick plate approximation gives a
reasonable estimate of impedance when the thickness to length ratio of an aperture is greater than about 0.3,
at high Strouhal numbers, the resistance value from the thick plate approximation is inaccurate for all
thicknesses of aperture.

Previous work has indicated that the effects of a shear layer that is thick relative to the aperture size can be
modeled effectively, if imprecisely, by applying PVM conditions to the underlying analysis for a thin shear
layer. The work made use of a thin plate approximation. It has been shown in this paper that the thin plate
approximation for PVM analysis gives quite accurate results of impedance for all aperture thicknesses, in
comparison to results from the PVM analysis with full account taken of aperture thickness. However, once
again the resistance becomes more inaccurate as the Strouhal number increases.

Theoretical values of aperture impedance for square apertures, from the current analysis with full account
taken of aperture thickness, have been compared against existing experimental results for fully developed
turbulent flow past circular orifices of equivalent area. The flow conditions, orifice shape and size are all
typical of the situations encountered in vehicle exhaust silencers. The PVM matching conditions are shown to
give impedance results that are much closer in comparison to the experimental results than results from the use
of PDM matching conditions. This confirms earlier work that suggested the effect of a shear layer that is thick
relative to the aperture size can be modeled effectively by use of PVM matching conditions. In particular, it is
shown that in this way the reactance of an orifice in a fully developed turbulent grazing flow can be predicted
very accurately.
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